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Abstract— Particle filter is proposed for tracking a torpedo using bearings-only measurements when torpedo is attacking an ownship. Towed 
array is used to generate torpedo bearing measurements. Ownship evasive maneuver is used for observability of the bearings-only process. 

Particle filter combined with Modified Gain Bearings-Only Extended Kalman Filter is used to estimate torpedo motion parameters, which are used 
to calculate optimum ownship evasive maneuver. Monte-Carlo simulation is carried out and the results are presented for typical scenarios. 

Index Terms— Evasive Maneuver, Modified Gain Bearings-only Extended Kalman Filter, Monte-Carlo Simulation, Observability, Particle Filter, Torpedo 

Motion Parameters, Towed array .   

——————————      —————————— 

1 INTRODUCTION                                                                     

N the ocean environment, two dimensional bearings-only 
target motion analysis is generally used. An ownship 
monitors noisy sonar bearings from a radiating target and 

finds out target motion parameters (TMP) - viz., range, course, 
bearing and speed of the target. The basic assumptions are 
that the target moves at constant velocity most of the time. The 
ownship motion is unrestricted. The target and ownship are 
assumed to be in the same horizontal plane. The problem is 
inherently nonlinear as the measurement is nonlinear.  
Bearings-Only Tracking (BOT) is the determination of the 
trajectory of a target solely from bearing measurements. In this 
passive target tracking, a single ownship monitors a sequence 
of bearing measurements, which are assumed to be available 
at equi - spaced discrete times. The target motion analysis can 
be viewed as target localization and its tracking. The BOT area 
has been widely investigated [1-4] and numerous solutions for 
this problem have been proposed. 

Maximum Likelihood Estimator (MLE) is found to be a 
suitable algorithm for passive target tracking applications, by 
virtue of its characteristics [1]. This is gradient search based on 
a batch processing of all the available measurements. MLE is 
asymptotically efficient, consistent, unbiased and its 
covariance matrix approaches the Cramer-Rao bound for large 
samples. Instead of assuming some arbitrary values, PLE 
outputs are used for the initialization of MLE [8].  

Another approach, utilization of Extended Kalman Filter 
(EKF) in modified polar [MP] coordinates [9] frame is found to 
be useful for this nonlinear application. In this algorithm, the 
observable and unobservable components of the estimated 

state vector are automatically decoupled. Such decoupling is 

shown to prevent covariance matrix ill- conditioning, which is 
the primary cause of instability. The MP state estimates are 
asymptotically unbiased. A hybrid coordinate system 
approach developed by Walter Grossman is also another 
successful contribution to bearings-only passive target 
tracking [10].  

 Another successful contribution to this field is by 
Song & Speyer [11]. The divergence in EKF [3, 4] is eliminated 
by modifying the ownship gains. This algorithm is named as 
modified gain bearings-only extended Kalman filter 
(MGBEKF). The essential idea behind MGBEKF is that the 
nonlinearities be “modifiable”. This algorithm has some 
similarities with the pseudo measurement function but it is 
not the same. In pseudo measurement filter, the gain is a 
function of past and present measurements. It is to be noted 
that MGBEKF is based on the algorithm for the EKF, the gain 
of the MGBEKF is a function of only past measurements. So, 
by eliminating the direct correlation of the gain and 
measurement noise process in the estimates of MGBEKF, the 
bias in the estimation is eliminated. A simplified version of the 
modified gain function is made available by Galkowski and 
Islam [12]. This version is useful for air applications, where 
elevation and bearing measurements are available. It is further 
modified for underwater target tracking applications [13-14], 
where bearings-only measurements are available. 

 The traditional Kalman filter is optimal when the 
model is linear. Unfortunately, many of the state estimation 
problems like tracking of the target using bearings only 
information are nonlinear, thereby limiting the practical 
usefulness of the Kalman filter and EKF. Hence, the feasibility 
of a novel transformation, known as unscented 
transformation, which is designed to propagate information in 
the form of mean vector and covariance matrix through a 
nonlinear process, is explored for underwater applications. 
The unscented transformation is coupled with certain parts of 
the classic Kalman filter. It is easier to implement and uses the 
same order of calculations. Using bearings-only 
measurements, Unscented Kalman filter (UKF) algorithm 
estimates target motion parameters [15-16]. UKF can be 
treated as an alternative to MGBEKF. But still, the basic 
constraint that is the PDF of noise in the measurements is to be 
Gaussian, for optimum results. Hence UKF can take up 
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  
Since bearing measurements are extracted from single passive sonar, the process 
remains unobservable until ownship executes a proper manoeuvre. For 
presenting the concepts in clear, it is assumed that the target is moving at 
constant velocity. Classical least squares method and Kalman filter cannot be 
directly applied. One useful approach is the Pseudo Linear Estimator (PLE) 
formulation proposed in [1] which lumps the nonlinearities into the noise term, 
resulting in a linear measurement equation. Here, the measurement matrix 
contains elements that are functions of noisy bearings and, overall, are correlated 
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nonlinearity but not non-Gaussian noise in the measurements. 
 Particle Filters (PF) [17]-[19] are the new generation of 

advanced filters, which are useful for nonlinear and non-
Gaussian applications.  PF or Sequential Monte-Carlo (SMC) 
methods use a set of weighted state samples, called particles, 
to approximate the posterior probability distribution in a 
Bayesian setup. At any point of time, the set of particles can be 
used to approximate the PDF of the state. As the number of 
particles increase to infinity, the approximation approaches 
the true PDF. They provide nearly optimal state estimates in 
the case of nonlinear and non-Gaussian systems, unlike 
Kalman filter based approaches. Because PFs do not 
approximate nonlinearities or non-Gaussian noise in the 
system and use a large number of particles, they tend to be 
computationally complex. However, with the currently 
available advanced microprocessors, the computation can be 
easily managed. PF combined with MGBEKF (PFMGBEKF) is 
proposed in this paper for passive bearings-only torpedo 
tracking using towed array measurements. 

 The task is to estimate the torpedo motion 
parameters, while ownship is in attack by a torpedo. After 
getting the first contact of the torpedo, ownship tries to escape 
by doing a certain manoeuvre. This manoeuvre is based on 700 
relative bearing method, which is being used by Navy.  
(Details are given in Appendix-A). Here this first manoeuvre 
is called as ownship safety manoeuvre. The idea is to escape 
from the field as early and quick as possible. In general, the 
ownship tries to increase the speed after turning to the 
required course. This is required for the ownship to escape 
from the target as early as possible.  

 The ownship’s subsequent escape manoeuvres can be 
carried out in systematic way, if torpedo’s range, bearing, 
course and speed are known. As these are not available, these 
are estimated using PFMGBEKF. Here as bearings are only 
available, ownship safety manoeuvre will be used for 
observability of the process. During safety manoeuvre, 
ownship tries to escape in such a way that range between 
ownship and target becomes maximum value with increase in 
time. But for getting solution, it is other way round. Range 
should decrease to get more bearing rate with increase in time. 
With this constraint, ownship tries to estimate the torpedo 
motion parameters to calculate proper evasive manoeuvres 
using Closest Path of Approach (CPA) at various time instants 
and escape from torpedo attack. 

 Section 2 describes mathematical modeling of 
measurements, PFMGBEKF and CPA. PFMGBEKF is 
developed and implemented on PC platform using MATLAB. 
Section 3 describes about implementation aspects of the 
algorithm. Extensive simulation is carried out and the results 
are presented for three scenarios. Section 4 covers the 
limitations of the algorithm and finally the paper is concluded 
in section 5. 

2 MATHEMATICAL MODELING 

2.1 State and Measurement Equations 

Let the target state vector be Xs (k) where Error! Reference 
source not 

found.Error! 

Reference source not found.            
                           (1) 
 
where (k)x  and (k)y  are target velocity components and 
Error! Reference source not found.are range components 

respectively. The 
target state 

dynamic equation is given by  
                      

                         
(2)     

where Φ and b are transition matrix and deterministic vector 
respectively. The transition matrix is given by 
 
 =                        Error! Reference source not found.

                                (3) 
 
 
where t is sample time.       

(4) 

 
                  Error! Reference source 
not found.                    (5) 

 
where  are ownship position components. The 
plant noise ω(k) is assumed to be zero mean white Gaussian 
with covariance                                                                                                                            (6) 
 
where  

            
Q=                              

Error! Reference source not 
found.(7) 

 
 

True North convention is followed for all angles to reduce 
mathematical complexity and for easy implementation. The 
bearing measurement Error! Reference source not found. is 
modeled as 
          (8)                               
where Error! Reference source not found. is error in the 
measurement and this error is assumed to be zero mean 
Gaussian with varianceError! Reference source not found.. 
The measurement and plant noises are assumed to be 
uncorrelated to each other. Eqn. (8) is a nonlinear equation 
and is linearized by using the first term of the Taylor series 
forError! Reference source not found.. The measurement 
matrix is obtained as Error! Reference source not found.Error! 
Reference source not found. Error! Reference source not 
found.      

(9) 
 

 since the true values are not known, the estimated values of 
Error! Reference source not found. are used in eqn. (9).   

2.2 Particle Filter 

The Particle Filter is a statistical brute-force approach to 
estimation that often works well for problems (i.e., systems 
that are highly nonlinear) that are difficult for the 
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conventional Kalman filter. Let us derive the basic idea of the 
PF. It was invented to numerically implement the Bayesian 
estimator. The main idea is intuitive and straight forward. At 
the beginning of the estimation problem, we randomly 
generate N state vectors based on the initial PDF P(XS(0)) 
(which is assumed to be known). These state vectors are called 
particles and are denoted as XS(k|k)   (k=1,2,…,N).  At each 

time step, we propagate 
the particles to the next 

time step using the process   
  
equation. (k=1,2,…,N).  (10)                                                                                  
where  each w(k+1) noise vector is randomly generated on the 
basis of the known PDF of w(k). After we receive the 
measurement at time k, we compute the conditional relative 
likelihood of each particleError! Reference source not found.. 
That is, we evaluate the PDF P(Z(k)|XS(k+1Error! Reference 
source not found.. This can be done if we know the nonlinear 
measurement equation and the PDF of the measurement 
noise. For example, if an m-dimensional measurement 
equation is given as  Error! Reference source not found. and 
Error! Reference source not found. then a relative likelihood 
q(k), that the measurement is equal to a specific measurement 
z given the premise that Error! Reference source not found. is 
equal to the particle Error! Reference source not found. can be 
computed as follows [18].                                        Error! 
Reference source not found. 
Error! Reference source not found.  

 
              
 

                               (11) 
 The ~ symbol in the above equation means that the 
probability is not really given by the expression on the right 
side, but the probability is directly proportional to the right 
side. So if this equation is used for all the particles, Error! 
Reference source not found., then the relative likelihoods that 
the state is equal to each particle will be correct. Now we 
normalize the relative likelihoods obtained in eqn. (11) as 
follows.  

Error! Reference 
source not found.                                                                                                       
Error! Reference source not found.                                                                                            
     (12) 

 Now we resample the particles from the computed 
likelihoods and a new set of particles that are randomly 
generated on the basis of the relative likelihoods q(k). 

2.3 Particle Filtering Combined with other Filters 

One approach that has been proposed for improving particle 
filtering is to combine it with another filter such as the EKF, 
UKF or MGBEKF [18].  In this approach, each particle is 
updated at the measurement time using the EKF, UKF or 
MGBEKF and then resampling (if required) is performed 
using the measurement. This is like running a bank of N 
Kalman filters (one for each particle) and then adding a 
resampling step after each measurement. After Error! 
Reference source not found. is obtained, it can be refined 
using the EKF, UKF or MGBEKF measurement-update 

equations. In this paper PF is combined with the 
MGBEKF.Error! Reference source not found. is updated to 
Error! Reference source not found. according to the following 
MGBEKF equations [18].                                                Error! 
Reference source not found.(13) 
Error! Reference source not found.Error! Reference source 
not found.Error! Reference source not found.              (14)  
Error! Reference source not found. 
Error! Reference source not found.(15) Error! Reference 
source not found.    Error! Reference source 
not found. 
Error! Reference source not found. Error! Reference source 
not found.Error! Reference source not found.                                                                
(16)      
where Error! Reference source not found. is Kalman gain, 
Error! Reference source not found. is a priori estimation error 
covariance for the ith particle and g (.) is modified gain 
function.  g(.)  is given by  
 
 
        

                  (17) 
 Since true bearing is not available in practice, it is replaced by 
the measured bearing to compute the function g (.).  
Resampling: In every update of PFMGBEKF, it is monitored 
to decide whether resampling of particles in respect of target 
state vector and its covariance matrix is required or not. 
Resampling is required when the effective sample size, 

 [18], where  
 
 
                                                                    
Error! Reference source not found.                                                             (18) 
 
whenever re-sampling is required, the following procedure 
based on weights of particles is adopted. In this method, 
weights are sorted in descending order. The corresponding 
original indexes prior to sorting are remembered. Then 
replication of particles (both the state and covariance matrices) 
is carried out in proportion to the weights of the particles 
starting with the particle with maximum weight age. This 
procedure is repeated for the particle with the next maximum 
weight age. This process is continued till all the particle 
positions are filled up. This method is close to the method 
suggested by B. Ristick, S. Arulampalam and N. Gordon [17]. 

2.4 Closest path of approach 

Let us assume that a target and ownship are moving at 
predefined constant velocities. At certain point of time these 
vehicles move through a point at which minimum distance 
will be there between them. This minimum distance is called 
Closest Path of Approach (CPA). Once torpedo motion 
parameters are estimated using PFMGBEKF, CPAs are 
calculated for all possible ownship evasive courses (say 0 to 
360 in step of 1 deg). Ownship will do evasive manoeuvre in 
the course at which maximum CPA is generated. CPA is 
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calculated as follows. It is assumed that target motion 
parameters and ownship parameters are known. Initially 
ownship is at the origin. Let the ownship & target courses be ϕ 
and ψ respectively. The distance between target and ownship 

positions at time t can be derived as follows 
Fig. 1. Ownship and target encounter. 

Error! Reference source not found.                                  (19) 
Error! Reference source not found.                                  (20) 
where Vt and V0 are the speeds of target and ownship 
respectively. To simplify the eqn. (20), let 
 Error! Reference source not found.  
Error! Reference source not found.                                                                            
Error! Reference source not found.  
Error! Reference source not found. then eqn.(19) & eqn. (20) 
become Error! Reference source not found.                                                                  
(21) Error! Reference source not found.                                                                          
(22) The distance Rt between ownship and target is given by 
Error! Reference source not found. 
By differentiating Error! Reference source not found.  with 
respect to time and equating it to zero, 

 Error! Reference 
source not found.                           

(23) 
 

For a particular value of t say Error! Reference source not 

found. equation 23 can be   written as 
Error! Reference source not found.                                                                              
(24) 

 
 At this stage, taking second derivative, we have,            

Error! Reference source not found.                                                                   

(25) 
and it is always greater than zero. Hence tm gives minimum 
time at which the distance R is minimum. If tm <= 0, it implies 
that present range is CPA and time to reach CPA point is zero. 
IfError! Reference source not found. , substituting the value 
of Error! Reference source not found.  in  eqn. (21), we will 
get Error! Reference source not found. as follows: 
 Error! Reference source not found. 
Error! Reference source not found.  
Error! Reference source not found.                          (26) 
SinceError! Reference source not found., equation (26) can be 
modified as follows:                                                                              
Error! Reference source not found.                               (27)        

Rt is nothing but CPA. So 
  
Error! Reference source not found.                                                                
(28) 

3 IMPLEMENTATION AND SIMULATION 

+For the implementation of the algorithm, the initial estimate 
of target state vector is chosen as follows. As only bearing 
measurements are available, it is not possible to guess the 
velocity components of the target. So these components are 
each assumed as 15 m/sec, which are close to the realistic 
speed of the torpedo. The range of the day, say 10000 meters, 
can be utilized in the calculation of initial position components 
of the torpedo as follows 
Error! Reference source not found.               (29) It is assumed 
that the initial estimate, X(0|0) is uniformly distributed. Then 
the elements of initial covariance diagonal matrix can be 
written as 
 
Error! Reference source not found.              (30) 
 
As PF is combined with MGBEKF, 1000 particles (almost 
similar performance is achieved with 10000 particles) are used 
to estimate target motion parameters.  
The measurement interval is assumed to be one second. It is 
also assumed that TA maximum auto detection range limit is 
10000 meters. Estimation of torpedo motion parameters is 
stopped when the range is 500 meters. Maximum ownship 
speed is 11 m/sec. Ownship turning rate is considered 1 
deg/sec. It is assumed that measurements are corrupted with 
one degree r.m.s error of Gaussian distribution. All angles are 
considered with respect to True North 0 to 360 degrees, 
clockwise positive. For the purpose of presentation, three 
scenarios as shown in Table 1 are considered for evaluation of 
the algorithm. The results obtained for the scenarios 1 to 3 are 
shown in Fig. 2 to 4 respectively. The estimated solution is 
said to be converged when 

a. error in the range estimate <= 20% of the 
actual range 

b. error in the course estimate <= 5 degs. 
c. error in the speed estimate <= 4 knots. 

The convergence time to obtain all the target motion 
parameters with the required accuracy for each scenario is 
shown in Table 1. The ownship evasive manoeuvre for each 
scenario is based on CPA. As it is straight forward to find out 
maximum CPA using eqn. (28), CPA results are not presented 
in the paper.  

Table 1 

S
 
N
o 

Initial 
Range 
(meters) 

Initial 
Bearing 
(deg) 

Target 
Speed 
(m/sec) 

Target 
Course 
(deg) 

Ownship 
Speed 
(m/sec) 

Ownship 
Course 
(deg) 

Converge
nce time 
(sec) 

1 4500 90 15.45 
293  
(0°) 

6.18 0° 145 

2 6000 270 15.45 
66.42 

(0°) 
6.18 0° 128 

3 5000 320 15.45 
125   
(0°) 

6.18 0° 124 
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Fig. 2(a).  Error in range estimate 
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Fig. 2(b).  Error in course estimate 
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Fig. 2(c).  Error in Speed estimate 
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Fig. 3(a).  Error in range estimate 
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Fig. 3(b).  Error in course estimate 
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Fig. 3(c).  Error in speed estimate 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 100 200 300 400 500
Time (seconds)

R
a
n
g
e
 E

rr
o
r 

(m
e
te

rs
)

 
Fig. 4(a).  Error in range estimate 
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Fig. 4(b).  Error in course estimate 
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Fig. 4(c).  Error in speed estimate 

4 LIMITATIONS OF THE ALGORITHM 

Angle on Target Bow (ATB) is the angle between the target 
course and line of sight. When ATB is more than 600, the 
distance between the target and ownship increases, as time 
increases and the bearing rate decreases substantially with the 
increase in number of samples. In such situation, it is very 
difficult to track the target. Also, the algorithm cannot provide 
good results when the measurement noise is more than 1 
degree r.m.s. In general, these two situations are constraints to 
any type of filtering technique. 

5 CONCLUSION 

Particle Filter (which is useful for nonlinear and non-Gaussian 
applications) combined with MGBEKF is proposed to estimate 
target motion parameters in passive target tracking. The 
performance of the PFMGBEKF is greatly superior to the 
standard extended Kalman filter. In this paper, tracking of 
torpedo using towed array measurements is explored. 
Ownship safety manoeuvre is used for observablility of the 
process. CPA method uses the estimated torpedo motion 
parameters to find out ownship evasive manoeuvre. Extensive 
simulation is carried out and the results are found to be 
consistent. For the purpose of presentation, results of three 
typical scenarios are presented. 

APPENDIX A 

In safety manoeuvre algorithm, it is observed whether the 
torpedo is on port side (sign of torpedo is negative) or 
starboard side (sign of torpedo is positive). If the absolute 

value of the relative bearing is less than 300, then evasive 
manoeuvre  is equal to measured bearing plus (sign of torpedo 
side)*300. If the absolute value of relative bearing is greater 
than or equal to 700, then evasive manoeuvre is equal to 1800 + 
measured bearing +(sign of torpedo side)*30 deg. 
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